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ABSTRACT Ribosomes are molecular machines that function in polyribosome
complexes to translate genetic information, guide the synthesis of polypeptides,

and modulate the folding of nascent proteins. Here, we report a surprising function

P

for polyribosomes as a result of a systematic examination of the assembly of a

,&:- ’

large ribonucleoprotein complex, the vault particle. Structural and functional

evidence points to a model of vault assembly whereby the polyribosome acts like a
3D nanoprinter to direct the ordered translation and assembly of the multi-subunit vault homopolymer, a process which we refer to as polyribosome
templating. Structure-based mutagenesis and cell-free in vitro expression studies further demonstrated the critical importance of the polyribosome in vault

assembly. Polyribosome templating prevents chaos by ensuring efficiency and order in the production of large homopolymeric protein structures in the

crowded cellular environment and might explain the origin of many polyribosome-associated molecular assemblies inside the cell.
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espite the detailed and broad

knowledge that has been acquired

about the structure and function of
individual ribosomes, there is little informa-
tion about the organization and function of
the polyribosome. Fifty years ago, a model
for eukaryotic polyribosome structure was
described whereby ribosomes were se-
quentially aligned along a single mRNA
strand moving from the 5’ to 3’ end as they
produced the growing protein chain."? Dif-
ferent routes have been proposed for the
path by which the mRNA threads through
the polyribosome including hairpins, spirals,
and loops.>~ Recent cryo-electron micro-
scopy (cryo-EM) analyses of free cytoplas-
mic polyribosomes indicate that the mRNA
adopts pseudohelical and pseudoplanar
paths with 5" and 3’ ends spatially separated
and with ribosome exit channels facing
outward.®” This arrangement would max-
imize the distances between the growing
peptides from neighboring ribosomes and
prevent unfavorable aggregation.®’ Here,
we present evidence for a new function of
the polyribosome where its spatial organi-
zation is critical for orchestrating favorable
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interactions between the growing peptide
chains, leading to the assembly of large
complexes. Discovery of this function, which
we call polyribosome templating, arose dur-
ing the study of vault assembly.

With a molecular mass of 13 MD and di-
mensions of ~72 nm x 42 nm x 42 nm,
vaults are among the largest ribonucleopro-
tein particles found in eukaryotic cells.?
Although no definitive function for vault
particles has yet been determined, their
evolutionary conservation and high abun-
dance suggest that they are involved in one
or more basic cellular activities.” A single
rat vault is composed of 78 copies of the
95.8 kDa major vault protein (MVP), tightly
arranged to form the capsule-like shell of
the particle.'® Each MVP chain is symmetri-
cally arranged with its N-terminus at the
waist of the particle and its C-terminus at
the cap'""'? (see Figure 1A). Inside the shell
are multiple copies of two additional pro-
teins, vault poly(ADP-ribose) polymerase
(VPARP) and telomerase-associated protein
(TEP1), and multiple copies of one or more
small vault RNAs (VRNAs).? Although insects
do not have vaults, mammalian MVP
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Figure 1. Systematic mutagenesis of the vault structure. (A) Scheme of MVP configuration within the vault structure. (B) MVP
N-terminal modifications. (C) Outcome of the structure-based mutagenesis: (check mark) = positive, (x) = negative.

expressed in insect cells assembles into vault particles.
These recombinant vaults lack VPARP and TEP1 ortho-
logs and the VRNA, yet they are structurally indistin-
guishable from native vaults."”®> While vaults were
discovered almost 30 years ago, their assembly has
remained a mystery. Here, we have discovered how
MVP chains assemble into the unique vault structure.

RESULTS

Capturing Assembly Intermediates of Vault Particles by
Structure-Based Mutagenesis. With the intent of using re-
combinant vaults as nanoscale delivery vehicles,'>~'>
MVP was engineered to include peptide extensions.
Such an engineering effort would benefit from a defi-
nitive understanding of how MVP assembles into vaults.
MVPs modified with N-terminal tags (ranging from
11 to 238 amino acids) assembled into vaults, but
how the extra and potentially flexible N-terminal pep-
tides all ended up inside the particle at the waist was
not fully understood."®

Therefore, we focused our attention on the natural
N-terminus of MVP, as analysis of the vault 3.5 A crystal
structure revealed that the two identical halves are
connected with each other at the waist via antiparallel
p-sheet interactions that form between the first four
N-terminal amino acids."®

An attempt was made to alter the interactions in
this area by a series of histidine substitutions for amino
acids at positions 3—8, expressing the constructs and
analyzing the resulting protein products for vault
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assembly (Figure 1B,C). Substitution with one to three
histidines (positions 3—5) did not alter the forma-
tion of vault particles. Substitution with four and five
histidines (positions 3—7) generated unstable vault
particles which appeared to separate into halves after
assembly. Interestingly, substitution with six histidines
(positions 3—8) completely disrupted vault assembly.
Instead of individual vault particles (Figure 2A), unusual
large structures were observed, predominantly stag-
gered “rolls” (Figure 2B) and some “sheets” (Figure 2C)
that appear to be rolls that became unraveled during the
negative stain EM preparation. These large MVP rolls
suggest that the 6-His-MVP mutant generates a structure
that represents a vault assembly intermediate, rather
than just a chaotically misassembled swirl of protein.

Three prominent white bands are seen on each
MVP roll (Figure 2B). The distances between these
bands are remarkably similar to the distance from the
vault waist to the shoulder region (shown in Figure 2B
aligned with a vault particle based on the crystal
structure),’® while the vault cap appears to be unstruc-
tured. The structures pictured in Figure 2C were inter-
preted as the inside of an unrolled sheet of MVP chains
with their C-termini emanating from the sides of the
sheet in a disordered manner (illustrated in Figure 2C
with superimposed MVP chains).

To confirm this observation, we further carried out
cryo-electron tomography (cryo-ET) analysis of the
vault assembly intermediate from the 6-His-MVP
mutant (Figure 3). The 3D tomogram showed that each
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Figure 2. Representative structures of the 6-His-MVP mutant. Electron micrographs of uranyl acetate stained supernatants of
lysates from infected Sf9 cells. (A) Wild-type MVP vaults with a close-up view from its red inset. (B) Staggered rolls of MVP
chains. Close-up view of the rolls aligned with a vault particle from the crystal structure.'® The vault cap (C), shoulder (S), and
waist (W) regions are indicated by white dashed lines. (C) Long sheet of an unraveled MVP roll. Close-up view of the sheet
superimposed with several individual MVP chains from the crystal structure.

roll of 6-His-MVP was centered on a vault-like core
structure (Figure 3C,D). The sheets that form from the
6-His-MVP mutation indicated that the sequence at the
MVP N-terminus was essential for the vault maturation.
Substitution of the natural amino acids of MVP at
positions 3—8 with histidines prevented a vault particle
from maturing and instead resulted in a continuously
formed sheet of MVP polypeptide chains giving rise to
the roll-like structures observed in the 6-His mutant
(Figure 3 and Supporting Information movie S1).

Polyribosome Templating Model for Vault Assembly. By
combining the observed 6-His-MVP structural pheno-
type with recently described polyribosome geometry,®”
a model of vault assembly was formulated as a
co-translational process that is spatially constrained
on a cytoplasmic polyribosome (Figure 4 and Sup-
porting Information Figure S1 and movie S2 see:
http://vaults.arc2.ucla.edu/MovieS2.htm).

In this model, which we termed polyribosome tem-
plating, a single polyribosome acts like a cellular 3D
nanoprinter. Progressively growing, neighboring MVPs
interact with each other on a polyribosome with their
N-termini to form a dimer. This MVP dimer then inter-
acts with another adjacent MVP dimer via gradual side-
to-side interactions to form an MVP tetramer. Succes-
sive addition of growing MVP dimers, layer-by-layer like
in a 3D printing process, continues until the 78-mer
of MVPs is reached and completes the entire vault
structure at the 3’ end of a polyribosome.
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The polyribosome templating model implies that (i)
the local MVP monomer concentration on a polyribo-
some is a reflection of the polyribosome topology and
is constant and hence does not depend on a critical
cellular concentration of MVP monomers to generate a
mature vault particle, as opposed to self-assembly; (ii)
free MVP monomers should not exist at any given time
as the polyribosome templating is a co-translational
event; (iii) each vault is translated from the same copy
of mRNA; and (iv) the observed roll-like structures of
the 6-His-MVP mutant should be tethered to a poly-
ribosome as they have lost their ability to pinch-off.

Experimental Evidence for Polyribosome Templating. /n Vitro,
Cell-Free Assembly. Self-assembly of vaults from indivi-
dual subunits would require a critical concentration of
MVP. However, vaults were detected by EM following
in vitro translation of MVP mRNA under conditions where
very low concentrations of MVP were synthesized (see
Figure 5A). This result provides further evidence for the
polyribosome templating model of vault assembly which
predicts that a single MVP mRNA polyribosome should
produce a vault even in a very dilute solution.

All of the MVP Monomers Are Assembled into Vault
Particles. To demonstrate that all of the MVPs are
incorporated into the vault particles, we performed
differential centrifugations (Figure 5B) of lysates from
insect cells expressing MVP followed by Western blot
analysis. As seen in Figure 5C, we could not detect any
free MVP monomer.
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Figure 3. Cryo-electron tomography of 6-His-MVP mutant rolled structures. (A,B) Two frames from a cryo-ET cut series
(Supporting Information movie S1) corresponding to different sample depths through a multiple 6-His-MVP roll. (C,D) Vault
particle is superimposed over the center of each roll, shown at the same magnification.

Figure 4. Model for vault assembly by polyribosome templating. (A) Schematic representation of a fully assembled
polyribosome; as translation continues, MVP chains emerge (red); when two opposing MVP chains are long enough (red
arrow), the N-termini interact to form a dimer; as translation of the MVP dimers nears completion, side-to-side interactions
between neighboring MVP dimers begin to occur to give rise to an MVP tetramer (blue arrow). These side-to-side interactions
of sequentially incoming MVP dimers begin to form a sheet (B,C), initiating the vault body to take its unique structure (D).
Once 39 MVP dimers emerge, a pinch-off event occurs, leading to formation of an intact vault particle (E). All components of
the model (MVP, vaults, and the 80S ribosome)'®'®~'® were drawn to scale.

Coexpression of Two Different MVP mRNAs. To test
whether each assembled vault would be translated
from the same copy of mRNA, we further performed
coexpression experiments. Thus, if two different MVP
mMRNAs are present in the same cell, two different vault
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particles would be formed. To test this theory, mRNA
coding for an MVP containing an N-terminal fusion
with mCherry fluorescence protein (mCherry-MVP)
and mRNA coding for a VSVG-tagged N-terminal MVP
fusion (VSVG-MVP) were expressed in insect cells using
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Figure 5. Experimental evidence for polyribosome templating. (A) Electron micrograph of in vitro synthesized vaults.
Samples were negatively stained with uranyl acetate. (B) Scheme of a differential centrifugation experiment. (C) Western blot
analysis of $S20, S100, and P100 fractions from the differential centrifugation.

Figure 6. Additional supportive evidence for polyribosome templating. (A—C) Coexpression of two different MVP mRNAs
leads to two types of vaults. Electron micrograph of (A) VSVG-MVP full vaults expressed from a single promoter plasmid, (B)
mCherry-MVP half vaults expressed from a single promoter plasmid, and (C) coexpression of mCherry/VSVG-MVP half and full
vaults using a dual promoter plasmid. (D,E) Visible association of 6-His-MVP mutant structures with polyribosomes. Electron
micrographs of purified polyribosomes from Sf9 cells expressing 6-His-MVP for 48 h (D) or MVP for 24 h (E). Samples were
negatively stained with uranyl acetate. Scale bar 100 nm.

a dual promoter expression system. When VSVG-MVP
mRNA was expressed alone from a single promoter
plasmid, stable vaults were formed (Figure 6A). In contrast,
expression of the mCherry-MVP mRNA alone resulted in
unstable vaults that rapidly dissociated into halves under
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conditions used for uranyl acetate staining (Figure 6B).
Coexpression of the two different MVP mRNAs in the
same cells using the dual promoter system revealed
that, indeed, two types of vaults were formed
(Figure 6C).
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Association of Polyribosomes with 6-His-MVP Mutant.
When polyribosomes were isolated from cells expres-
sing the 6-His-MVP mutant at 48 h following infection,
numerous bound MVP rolls were observed (Figure 6D).
As expected, the rolls were considerably larger in
diameter than those seen at 24 h.

We also isolated polyribosomes from Sf9 cells ex-
pressing an MVP lacking the 6-His substitution and
found individual assembled vaults associated with poly-
ribosomes (Figure 6E). The observation of a vault asso-
ciated with a polyribosome was a less frequent event,
as these vaults possess the native ability to pinch-off
from the polyribosome upon their completion.

DISCUSSION

The proposed polyribosome templating model ex-
plains previous assumptions that were inconsistent
with self-assembly of individual free MVP chains into
vault particles.'® A requirement for a polyribosome to
form vaults predicts that reassembly from MVP mono-
mers should not occur. Indeed, efforts to reassemble
vaults from dissociated MVP monomers by urea and
guanidine HCl treatment of purified vaults have failed
even when gentle renaturation was attempted in the
presence of cytoplasmic chaperones (data not shown).
Polyribosome templating would allow 78 MVP mono-
mers to form into a complex structure within the
crowded cytoplasm environment despite an extremely
low overall monomer concentration, as supported by
the fact that vaults assemble in in vitro translations and
that free MVP chains could not be detected in lysates of
Sf9 cells during active vault synthesis.

An advantage of coupling the assembly of the vault
complex to translation on a polyribosome is to guar-
antee an efficient ordered interaction of MVP chains
into the stable macromolecular structure and to pro-
tect nascent MVPs from potential degradation and/or
aggregation.

The sole conformation of the MVP monomer
plays a determinant role in permitting co-translational
assembly to occur. Each MVP monomer consists of
nine structural repeat domains, a shoulder domain,
a cap helix domain, and a cap ring domain.'® The
structural repeat domains are expected to fold quickly
and independently of each other during translation,
a necessary prerequisite for co-translational assembly
on a polyribosome. The shoulder domain brings
the initially outward facing MVP chains together to form
a dimer. Finally, the cap helix domain would impose
favorable tension on vault assembly by tethering the
incrementally built vault complex to the polyribosome.

The high evolutionary structural conservation and
broad species distribution of vaults are a result of the
prominent conservation of the unique MVP coding
sequence. This high degree of MVP homology be-
tween different species might be a reflection of poly-
ribosome templating, where polyribosome topology
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is conserved among species and is critical for vault
assembly. This would also explain why vaults can be
produced in eukaryotic organisms that naturally do not
possess vaults (e.g., insects). The MVP itself in combina-
tion with the topology of a eukaryotic polyribosome is
sufficient to form vaults.

The existence of the polyribosome has been known
for 50 years, and it is generally accepted that most
protein synthesis occurs on these structures.” How-
ever, the only function which is implied from the
structure of the polyribosome is the ability to increase
the efficiency of protein production by a single mRNA.
The ability to template the assembly of a macromole-
cular complex demonstrated here is a new func-
tion for the polyribosome, the significance of which
could go far beyond vault assembly as other com-
plexes, homopolymeric or heteropolymeric, might
also utilize this ordered process. Certain homodimers
(p53 and NF-kB)'®2° and cytoskeletal protein polymers
(vimentin, myosin, and titin) are believed to assemble
co-translationally.?’ A nascent polypeptide could be
directed by the polyribosome to participate in an
ordered assembly with one or more completed protein
chains. This would imply that certain multi-subunit
complexes could require one or more subunits to be
translated on a polyribosome to ensure proper assem-
bly. Indeed, a recent study used ribonucleoprotein
immunoprecipitation analyzed with DNA chips to ex-
amine 31 proteins with different functions and struc-
tures and found ~38% co-purified with mRNAs that
encode interacting proteins.?? The authors concluded
that “co-translational formation of protein—protein
interactions is a widespread phenomenon”.

Whether the multiple polyribosome topologies
found in prokaryotes and eukaryotes®’ are related to
the polyribosome templating for assembling such
multi-subunit complexes awaits further experimental
demonstration. It was argued that the polyribosome
topology limits internascent chain interactions to pre-
vent unfavorable folding and aggregation,® a scenario
mainly for monomeric proteins. Conversely, our data
shown here establish that polyribosome templating
may direct and promote favorable protein interactions
for homopolymeric protein complexes.

CONCLUSION

In a time in which efficient 3D manufacturing is
predicted to have a revolutionary effect on mankind,
nature unveils that it has already been using this
technique for millions of years. Vaults are very large
ribonucleoprotein particles found widely in eukar-
yotes. Our discovery of the unique assembly mechan-
ism of the vault particle reveals an unforeseen function
of the polyribosome as a very sophisticated cellular 3D
nanoprinter. This role of the polyribosome as a molec-
ular platform that is actively involved in the ordered
translation of protein complexes may provide new
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avenues toward the understanding of the implication
of protein aggregation in a vast number of pathologies
such as Alzheimer's disease. Elucidating the involvement

MATERIALS AND METHODS

Recombinant MVP. The rat MVP N-terminus was systematically
modified by substitution with histidines at residues 3—8 by PCR.
To produce recombinant vaults, a baculovirus system (Invitrogen)
was used to infect insect Sf9 cells as previously described.
Infected Sf9 cells were then lysed in buffer A (50 mM Tris-Cl,
pH 7.4, 75 mM Nadl, 0.5 mM MgCl,) supplemented with 1%
Triton X-100 plus RNase A (0.1—0.2 ug/mL final concentration),
incubated on ice for 30 min, followed by centrifugation at 20 000g
at 4 °C for 20 min. The clarified supernatant (S20) was collected,
and recombinant vaults were visualized by electron microscopy.

Preparation of Polyribosomes. Sf9 cells infected with either
6-His-MVP or wild-type MVP baculoviruses were harvested
24 and 48 h post-infection. Cells were lysed on ice for 5 min in
buffer containing 15 mM HEPES-KOH, pH 7.5, 5 mM MgCl,,
100 mM KCl, 0.1 mM EDTA, and 1% Triton-X-100. Cell lysates
were clarified by centrifugation at 10000g for 5 min at 4 °C.
Clarified cell lysates were overlaid onto sucrose step gradients
(20, 30, 40, 45, 50, and 60%) and centrifuged at 25 000g for 2.5 h
at 4 °C (Beckman SW41 rotor). The 45% sucrose fraction was
collected and designated the polyribosome fraction.

Electron Microscopy. Samples were assessed by EM using
negative staining with 1% aqueous uranyl acetate as previously
described.?* Grids were examined on a JEM1200EX (JEOL)
electron microscope, and micrographs were captured with a
BioScan 600 W digital camera (Gatan).

Cryo-Electron Tomography and Image Processing. Cryo samples
were prepared by placing a small drop (~4 ul) of sample
solution onto a glow discharged holey carbon mesh (Quantifoil
200 mesh grid with 3.5 um holes spaced 1 um apart). The grids
were blotted and plunged immediately into liquid-nitrogen-
cooled liquid ethane to rapidly freeze the samples in vitrified
ice. The cryo samples were visualized with an FEI Titan Krios
transmission electron microscope with an accelerating voltage of
300 kV. The samples were imaged at 50000x to 100 000x with
an underfocus value of 3 um at 0° tilt, utilizing an energy filter.
Tomography tilt series were taken using the FEI batch tomogra-
phy software to set up and automatically acquire sample images
with a tilt range from —70 to +70°. The tilt series were recorded
on an Ultrascan 4 megapixel CCD camera (Gatan). Alignment of
the tilt series was performed using the etomo tomography
processing software from the Imod package. The steps included
X-ray removal, rough alignment by cross-correlation, and fine
alignment by fiducial gold tracking. The aligned tilt series were
then used to make a 3D reconstruction using GPU-based SIRT
(simultaneous iterative reconstruction technique) reconstruction
implemented in Inspect3D. The 3D reconstructions were saved as
a stack of X—Y plane images that are single pixel slices along the
Z plane. Slices from the reconstructions were displayed using the
slicer within 3dmod from the Imod package.

In Vitro Translation of MVP mRNA. /n vitro translation was carried
out using an insect-based cell-free system (EasyXpress Insect
Kit I, Qiagen), using the protocol described by the manufac-
turer. In vitro synthesized recombinant vaults were further
treated with RNase A and purified over 20% sucrose cushion
(centrifuged at 100 000g for 2 h at 4 °C in Beckman Coulter Ti
70.1 rotor). Pellets were then dissolved in buffer A and visualized
by EM.

Differential Centrifugation and Western Blot Analysis. Infected Sf9
cells were lysed as described above and centrifuged at 20 000g
for 20 min at 4 °C. The supernatant, referred to as S20, was
diluted in 7.5 mL of buffer A and subsequently centrifuged
at 100000g for 1 h at 4 °C after reserving 5 uL for future
electrophoretic analysis. The obtained pellet and supernantant,
referred to as P100 and S100, respectively, were then diluted in
7.5 mL buffer A each, and 5 uL of each fraction was subjected to
electrophoresis.

of the polyribosome in inappropriate protein aggrega-
tion could uncover it as a novel translational target for
therapies.

Sodium dodecyl sulfate—polyacrylamide gel electrophore-
tic (SDS—PAGE) analysis was carried out on minigels (4—12%
acrylamide, Bio-Rad). Separated proteins were transferred
to Hybond-C nitrocellulose membrane (GE Healthcare) for 1 h,
by means of a Mini-PROTEAN Il cell apparatus (Bio-Rad) and
incubated in TTBS (50 mM Tris-HCl, 0.1% Tween-20, 150 mM
NaCl, pH 7.5), containing 5% nonfat dry milk for 1 h. Samples
were then incubated overnight in TTBS/3% nonfat dry milk,
containing the primary antibody (MVP polyclonal rabbit,
1:2000). After several washes in TTBS, the membrane was
incubated in TTBS/5% nonfat dry milk containing goat anti-
rabbit antibody coupled to horseradish peroxidase (1:2000;
Bio-Rad) for 2 h. After several washes in TTBS, immunoreactive
bands were visualized by using an enhanced chemilumines-
cence Western blotting detection kit (GE Healthcare) according
to the manufacturer's instructions. The membrane was then
immediately exposed to Fuji medical X-ray film Rx-U in a film
cassette at room temperature.
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